Terminale S5

Gambetta
Année scolaire

Cité Scolaire

2019-2020

Exercice 1:

Partie A R.O.C

On rappelle que pour tout $x \in IR$, $e^x > x$

- 1. Etudier les variations de la fonction f définie sur $[0; +\infty[$ par $f(x) = e^x \frac{x^2}{2}]$ (la limite en $+\infty$ n'est pas demandée)
- **2.** Démontrer alors que, pour x > 0, on a $\frac{e^x}{x} > \frac{x}{2}$
- 3. En déduire que : $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.

Partie B – Etude d'une fonction auxiliaire

Soit la fonction g définie sur IR par $g(x) = (x^2 + 2x - 1)e^{-x} + 1$

- **1.** Etudier les limites de g en $+\infty$ et en $-\infty$. (On rappelle que $\lim_{x\to +\infty} \frac{e^x}{x^2} = +\infty$).
- **2.** Calculer g'(x) et montrer que g'(x) et $(3-x^2)$ ont le même signe.
- **3.** En déduire le tableau de variations de g.

4.

- **a.** Montrer que l'équation g(x) = 0 admet 2 solutions dans IR, dont l'une vaut 0.
- **b.** On note α la solution non nulle. Donner un encadrement de α d'amplitude 10^{-2} .
- **5.** En déduire le signe de g(x) suivant les valeurs de x.

Partie C – Etude de la fonction f

On considère la fonction f définie sur IR par : $f(x) = x - (x^2 + 4x + 3)e^{-x}$

On désigne par C_f sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

1. Déterminer les limites de f en $+\infty$ et en $-\infty$.

2.

- **a.** Démontrer que, pour tout réel x, f'(x) = g(x).
- **b.** Dresser alors le tableau de variations de la fonction f.